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Darcy  

In this work, several philosophical points with respect to the momentum equation in a 
porous medium are analyzed. We show that several erroneous/irrelevant issues were put 
forward in previous work. A porous medium/clear fluid interface is best dealt with by the 
Brinkman-Forchheimer-extended Darcy formulation and the continuity of velocities and 
stresses at the interface The effect of porosity variation is not required for a high-porosity 
medium but should be considered for a dense porous medium. 
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I n t r o d u c t i o n  

The purpose of this work is to address a topic discussed in an 
earlier work by Nield (1!)91). In that work Nield argues about 
several philosophical points with respect to the momentum 
equation in a porous medium. In this work, we show that 
several erroneous/irrelevant issues were put forward by Nield. 

Nield (1991) dealt witih an important and classical problem 
involving the fluid mechanics of the interface region between 
a porous medium and a fluid layer. Earlier Vafai and Kim 
(1990a) obtained an exact solution to this problem using a 
Brinkman-Forchheimer-extended Darcy equation (generalized 
momentum equation). Assuming two-dimensional (2-D), 
steady-state, isotropic, incompressible, homogeneous flow 
through a fluid-saturated porous medium, Vafai and Tien 
(1981) obtained the gow:rning momentum equation based on 
local volume averaging and matched asymptotic expansion as 
follows: 

p(v  ° V)V = - - V p  -Jr- PerfVZv - ' ' f  ¥ Fp x/~ Ivlv (1) 
K 

Nield questioned the validity of including macroscopic flow 
development and the macroscopic viscous shear stress term (or 
Brinkman term). He concluded that, for flow in a dense porous 
medium, the first term in Equation 1 can be omitted. He 
suggested dropping the Brinkman term and using the 
Beavers-Joseph boundary condition for flow at a porous/fluid 
interface. We review his comments on these issues. For  the sake 
of appropriateness, we will follow the same order as that in 
Nield (1991). 
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Brinkman term 

It should be mentioned that in the field of "fluid flow and heat 
transfer in porous media," as in the field of "turbulence," some 
of the information has been obtained from an intuitive basis 
rather than a formal approach. Kolmogrov microscales, flow 
and thermal scaling, buckling and eddy formation, and 
coherent structures constitute a few of these intuitively based 
ideas in the field of turbulence. This type of approach is 
expected to lead to increasingly realistic future models for the 
prediction of technologically important turbulence or porous 
media problems. Certaintly for a developing field, such as 
turbulence or porous media, all things cannot be resolved in 
one attempt. All sections of useful information are very 
important in the development of any of these fields. There is 
also a need for some systematic assumptions and approxima- 
tions in these fields. Vafai and Kim's (1990a) approach is based 
on Vafai and Tien's (1981) original approach in which the shape 
of the averaging volume is chosen for physical interpretation 
of the relevant averaged quantities. Therefore, our averages, in 
effect, will correspond to the line averages of the physical 
quantities in the transverse direction that is normal to the flow. 
Thus, our results are valid, as mentioned in the manuscript, for 
a 2-D flow. This and subsequent discussions point out Nield's 
flawed arguments on this issue. Indeed, by choosing a 
cylindrical volume, we can satisfy the criteria for choosing three 
distinctive length scales in porous media; i.e., d << h << L, where 
d is some microscopic characteristic length representative of 
the distance over which significant variations in the point 
velocity take place; h is a characteristic length for the averaging 
volume; and L is some macroscopic characteristic dimension 
representative of the process under consideration. 

It should be noted that the empirical information employed 
to obtain Equations 14 and 15 of Vafai and Tien (1981) 
concerns specific physical terms in the fundamental averaged 
transport equations and is very different from the global 
empirical relations as given in Equations 3 and 5 in that 
reference. Therefore, the shape of the averaging volume gives 
a direct physical interpretation of the relevant averaged 
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quantities. That is why the inclusion of the Brinkman term is 
valid for a 2-D flow field, as was substantiated in Vafai and 
Tien(1981). Nield has missed the crucial physical significance 
of this point in his work, as he argues that the inclusion of the 
Brinkman term is valid for a three-dimensional (3-D) flow field. 
Without the 2-D restriction, the physical phenomena described 
by the Brinkman term would be flawed and without any 
physical basis. It should be noted that the form of the equations 
used in this work constitutes the most comprehensive equations 
for porous media, and its derivation can be made more 
rigorously by applying the method of matched asymptotic 
expansion, giving exactly the same final result as given in Vafai 
and Tien (1981). 

Furthermore, even smaller scales than those cited above have 
been encountered in a number of other fluid mechanics 
problems; for example, the boundary-layer thickness for a high 
Reynolds number flow close to the leading edge of an external 
boundary, or the initial interface region between two 
high-speed fluids (no porous media), or the entire constant 
boundary-layer thickness for a high-speed disk rotating in a 
low-kinematic viscosity fluid (covers a significant number of 
practical fluids) near the ground. Another example pertains to 
the shock layer. For a shock layer only about 10 mean free 
paths thick, as measured by Sherman (1955), there was 
considerable doubt that the Navier-Stokes or the continuum 
approach altogether is not valid. However, agreement with the 
experiment was found to be excellent, and attempts to improve 
the analysis with kinetic theory have not resulted in any 
substantial improvement. 

In another argument, Nield (1991) mentions that if the 
variable porosity effects are not accounted for, then use of the 
Brinkman term leads to no benefit. This statement is simply 
wrong. As mentioned earlier, various porous media have very 
high porosities. For media with such high porosities (e.g., in 
the upper 90 percent), porosity variations are not significant; 
whereas, the boundary effects are very significant. Importance 
of boundary and inertia effects for constant porosity as well as 
variable porosity aspects are analyzed in detail in Vafai and 
Tien (1981, 1982), Vafai and Thiyagaraja (1987), Beckermann 
et al. (1986, 1988), Kladias and Prasad (1988), David et al. 
(1988), Vafai (1984), Amiri and Vafai (1994), as well as several 
other works. The importance of the Brinkman-extended Darcy 
flow model has been demonstrated by Tong and Subramanian 
(1985), Vasseur and Robillard (1987), Lauriat and Prasad 
(1987), and Prasad et al. (1988), and the importance of 
Forchheimer-extended Darcy flow model has been demon- 
strated by Beavers and Sparrow (1969), Bejan and Poulikakos 
(1984); Poulikakos (1985), Poulikakos and Bejan (1985), and 
Prasad and Tuntomo (1987). 

Nield (1991) also mentions that most natural media have a 
porosity less than 0.6, giving the impression that, for most 
practical applications, the porosity is less than 0.6. This is not 
the case. First, various naturally occurring media have very 
high porosities, such as lava, sponge-type media and snow. 
Furthermore, in modeling flow over a number of naturally 
occurring configurations, a high porosity model must be used. 
In addition, many such manmade materials as various 
insulation and Foametals have porosities in the nineties. 

It would be instructive to discuss some of Nield's previous 
works that are relevant to the present investigation. In the 
paper entitled "The Boundary Correction for the Rayleigh- 

'Darcy Problem: Limitations of the Brinkman Equation" 
(Nield, 1983), he questions the applicability of the Brinkman 
equation and mentions "The no-slip condition on rigid 
boundaries necessitates a correction to the critical value of the 
Rayleigh-Darcy number for the onset of convection in a 
horizontal layer of a saturated porous medium uniformly 

heated from below. It is shown that the use of the Brinkman 
equation to obtain this correction is not justified because of 
the limitations of that equation" and "We have shown 
that although the Brinkman equation is useful in the treatment 
of flow past a very sparse collection of obstacles, and for flows 
in porous media where the velocity is constant except in regions 
near boundaries, it is not generally applicable to flow in porous 
media." 

However, in a later work (Nield, 1984), he realizes that his 
questioning of the applicability of the Brinkman equation and 
his conclusion about it are incorrect, and he states "and this 
led me (Nield, 1983) to question the applicability of the 
Brinkman equation in the bulk of the porous medium. I now 
realize that the discrepancy is due, not to the use of the 
Brinkman equation, but rather to the Galerkin approximation 
used by Rudraiah et al. (1980). This approximation failed to 
take into account the boundary layer, which must arise when 
the Brinkman equation is used." Therefore, the statements 
made by Nield with regard to the limitations of Brinkman 
equations were completely retracted by him. 

Convec t i ve  iner t ia l  te rm 

The so-called "ideal medium" described by Nield (1991) and 
used in his discussions has none of the major characteristics of 
a porous medium. The porous medium considered in the work 
of Vafai and Kim (1990a, b) and described in more detail in 
such references as Vafai and Tien (1981) and Vafai (1984) has a 
random structure and is made of an interconnected structure. 
The idealized medium considered by Nield (1983) has 
absolutely none of the cited crucial characteristics; a medium 
made of identical tubes of uniform cross section is neither 
random nor does it have any form of interconnected structure 
associated with it. In fact, for this medium, the flow field inside 
each tube is essentially completely independent (after a short 
entry length) of the flowfield inside the other tubes. That is, 
there is no interaction at all between flow inside one tube and 
any other tube! The idealized porous medium described by the 
author can by no means be considered to be a regular porous 
medium. In lieu of the above discussion, the subsequent 
arguments made by Nield (1991) are flawed and irrelevant. 

On the basis of these observations, Nield (1991) argues about 
removal of the convective term in the momentum equation 
for the porous media. The convective term must be present in 
a generalized equation of motion for the porous medium. This 
can be proved through a rigorous derivation of the equation 
of motion along the lines of what has been presented in Vafai 
and Tien (1981), coupled with a matched asymptotic expansion 
analysis as that presented in Vafai and Thiyagaraja (1987). In 
fact, as explained in Vafai and Tien (1981), it is this convective 
term that is responsible for the boundary-layer development 
along, for example, an external surface embedded in a porous 
medium. As was also shown in this same reference, the 
hydrodynamic developing length for most practical applica- 
tions is very small and, in general, can be ignored. This fact 
was later shown to be true numerically by Kaviany (1985). In 
addition, the equation used by Nield (1991) for initiating his 
arguments (Equation 10) is incorrect. He presents this equation 
on the premise that the forces represented by the right-hand 
side of Equation 2 in his work are in balance, but this happens 
only when the boundary layer has been developed; that is, after 
the short hydrodynamic entry length, after which the 
convective term can be dropped (as explained in Vafai and Tien, 
1981). Furthermore, in substantiating his argument, Nield 
(1991) again draws upon the flawed idealized model alluded to 
in the previous comment. Without a convective term, there is 
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no mechanism for development of the flow field, which leads to 
a physically flawed and unrealistic situation. 

In another paper (Nield and Joseph, 1985) the importance 
of inertial effects are studied by Nield through the use of a 
momentum equation that includes a quadratic drag term 
(similar to the form used in Vafai and Tien, 1981). However, 
in another paper (Joseph et al. 1982) it is mentioned that "In 
this problem the effects of the presence of a swarm of other 
spheres is accounted for by the nonlinear "Forchheimer' drag 
law rather than the linearized (Darcy) drag law. This leads us 
directly to the following self-consistent problem of the 
Brinkman type: (the equation given is quite similar to the one 
used in Vafai and Tie, n, 1981 and Vafai, 1984)" and in 
the same reference it is concluded that "we have formulated 
a nonlinear theory which is consistent with the available 
experimental data for flow through porous material. Although 
our work is formulated for flow through a fixed solid matrix, 
similar considerations apply to sedimentation problem in 
which particles fall through a viscous fluid." 

Interracial boundary conditions 

Just as there are several tarbulence models for modeling of high 
Reynolds number flow., there are several approaches for 
modeling flow and heat transfer processes in a porous medium. 
It is well known that the Darcy flow model cannot predict the 
viscous effects (from the presence of a boundary), the flow 
development, and the high-velocity effects. This is why there 
was a definitive need fi)r extending the Darcy model. For 
details, we can refer to "Principles of Heat Transfer in Porous 
Media" (Kaviany, 1991). They arrived at a momentum equation 
through the use of local volume averaging technique. As 
pointed out earlier, some systematic assumptions and/or 
approximations are needed for analysis of heat and fluid 
flow in porous media. 

This is again because of the complex nature of physical 
phenomena in the pores. Perhaps a good and relevant example 
of this approach is the treatment of an interfacial region 
between two different fluids. It is conventional to treat such a 
region by a mathematically dividing surface of zero thickness 
with two continuum fluids having uniform properties all the 
way up to the zero thickness interface. Our knowledge of the 
phase interface is by no means complete, but there is enough 
experimental data that show density may be a continuous 
function of position. Perhaps all of the intensive variables 
should be considered continuous functions of position in going 
from one phase to the next. However, there is a disadvantage 
in taking the apparently more realistic view of a continuous 
interfacial region; namely, making the problem very complex 
and to some extent undefined. This accounts for the popularity 
of the zero thickness models for the phase interface. Yet the 
experimental effects directly attributable to the behavior of the 
material in the interfacial region cannot be ignored. For this 
reason, when the error is significant, a correction term such as 
a surface tension should be introduced. However, in Vafai and 
Kim's (1990a, b) works, there is no need for the introduction 
of such a correction term. 

The central theme of Nield's work (1991) can be summarized 
by one statement. 'Over the pore section of the interface the 
velocity shear is continuous, but this is not the case over the 
solid section. In the solid the velocity shear is identically zero 
but in the adjacent clear fluid it has in general some 
indeterminate non-zero value. The averaged velocity shears 
therefore do not match" (270). His statement is simply wrong. 
In the solid region, the viscosity can be considered to be infinite, 
so the product of the viscosity and the velocity gradient is an 
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indeterminate nonzero. In other words, we should have the 
continuity of the shear stress at the interface. Mathematically 
this can be expressed as follows: 

. s a y  f = ay , (2) 

Nield's argument was based on matching velocity gradient 
rather than shear stress at the interface. This is also true for 
the normal stress. 

Along the same lines, in the last paragraph of modeling an 
interface section of the Nield's (1991) work, he argues against 
the pressure continuous across the interface, and he refers back 
to the philosophical arguments about what constitutes an 
interface. It is understood that the interface is an idealization 
of a region where the pressure goes through gradual changes. 
However, interface idealization, in effect, amounts to the 
introduction of a zero thickness surface. This surface, although 
it is only a mathematical abstraction, is a very useful and 
practical way of handling the interface problems. In reality, 
there are going to be gradual changes over a region of finite 
thickness rather than zero thickness, but again, this gets us 
back to the same philosophical questions for which we do not 
have any satisfactory answers. Furthermore, Nield does not 
offer any type of solution regarding this part. 

Once we treat the interface as a surface with zero thickness, 
we can rigorously show the continuity of both the normal shear 
and pressure across the interface. Applying Cauchy's lemma at 
the interface of media I and II we obtain the following: 

t'(n) = - - t " ( - n )  (3) 

Applying Cauchy's lemma again for medium II we obtain the 
following: 

t"(n) = - t l l (  - -  n) (4) 

Therefore, 

fl(n) = t"(n) (5) 

The stress vector can be written as follows: 

t(n) = T/z.nfi (6) 

Using Equation 4 in Equation 3 results in three independent 
interface conditions for the Cartesian coordinate: 

Trxr = T" xy (7) 

T I = T" . . (8) 
I _ _  11  T z y -  Tzy (9) 

or the above can be represented as follows: 

/4Lay a x ] ,  ~ a x j , ,  = #l,/Tvv + (10) 

ravyl [avyl 
-PI - I -  21a, I[~yJl = -PII  + 2~" /~ /L  YJll (II) 

= /.till 6~y q'- (12) ~LlILuyl-~,, az], azJli 
It can be shown that Equation I ] can be reduced to 

PI = Pn (13) 

because at the interface 

Fa ,l Fa ,l 
= '"[_Ty ]i, ( 1 4 )  

for a two-dimensional configuration (Chen and Chen, 1992). 
Therefore both forms of the normal stress boundary conditions 
(eq. 10b) cited in Vafai and Kim (1990a, b) are correct. Further- 
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more, there appears to be a total misunderstanding on the part of 
Nield (1991) since Vafai and Kim (1990a, b) did not even directly 
use this condition when they solved their problem numerically. 
This is because they used one domain approach in terms of Vor- 
ticity-Stream Function-Temperature formulation, which satisfies 
this condition indirectly. 

In addition, a real porous-fluid interface is significantly more 
complicated than what has been stated by Nield (1991). That is 
why the traditional matching conditions are used in Vafai and 
Kim (1990a, b). The author's argument, in reality, is only a 
subset of problems that we must deal with when we consider the 
micromechanics of a porous-fluid interface. This is a very 
complex task, which has not even been successfully handled for 
regular fluid-fluid interfaces. As it was already clearly and 
explicitly mentioned in Vafai and Kim (1990a), we were "not 
trying to resolve a philosophical and complex question with 
respect to the physical nature of the interface" (p. 254). 
However, the author's central theme falls exactly under one of 
the subsets of this very issue. We cannot consider this issue 
from a very limited angle without accounting for all of the other 
equally important issues. Again, it should be mentioned that 
an exact solution has been presented in Vafai and Kim (1990a) 
for a classical problem using the classical interface boundary 
condition. 

Beavers and Joseph (1967) interpreted macroscopically 
experimental results for parallel flows and indicated that the 
tangential interfacial velocity is not the same as the Darcian 
velocity, and there is a discontinuity in the tangential velocity. 
They presented a semiempirical treatment based on the velocity 
slip, which can be correlated with the following: 

) y=o K1/2 ( U i -  Uo) (15) 

where ~ is the slip coefficient. Kaviany (1991) presented a review 
on the slip coefficient ct and showed that it depends on the 
interfacial location, the particle Reynolds number, the gap size, 
permeability, the porosity, and surface structure of the porous 
medium, to name a few. Hence, it is not an easy task to 
determine the slip coefficient. 

Furthermore, it should be noted that the Beavers and Joseph 
(1967) slip condition was rigorously shown to be derivable from 
the generalized equation of motion (including both the 
boundary and inertial effects) in porous media, as shown in 
Vafai and Thiyagaraja (1987, pp. 1401-1403, in particular Table 
1, and Figure 10). Earlier Neale and Nader (1974), in a 
simplified treatment, recognized that the no-slip matching 
conditions using the Brinkman formulation yield consistent 
results with the slip flow using Beavers and Joseph's condition 
for Poiseuille flow in a channel for 7 = x~efff~f- 

The reason why Brinkman-Forchheimer-extended Darcy 
formulation has gained large popularity is partly because it 
enables investigators to treat a porous/fluid composite region 
as a single domain. By considering the regular fluid as a porous 
medium with large permeability, we can solve only one set of 
conservation equations for the entire domain. The more 
important reason for its success lies in that numerically 
predicted results using this formulation together with 
conventional boundary conditions at the interface, as in 
Equations 5-7 agree well with experimental results. 

Beckermann et al. (1988) studied numerically using this 
approach and experimentally natural convection in a vertical 
fluid enclosure partially filled with a fluid saturated porous 
medium heated from the side. For various test cells, 
porous-layer configuration and fluid-solid combinations, the 
model predictions showed excellent agreement with the 
experimental measurements. Thermal convection caused by 
heating from below in a porous layer underling a fluid layer 

was numerically investigated by Chen and Chen (1992). The 
motion of the fluid in the porous layer is governed by Darcy's 
equation with the Brinkman and Forchheimer terms; whereas 
that in the fluid layer is governed by Navier-Stokes equation. 
Heat transfer rates predicted by the numerical scheme for depth 
ratio of 0.1 and 0.2 show good agreement with the experimental 
results of Chen and Chen. To verify the validity of the 
mathematical formulation based on Brinkman-Forchheimer- 
extended Darcy equation (generalized equation) of motion, 
Kladias and Prasad (1991) conducted experiments for a wide 
range of governing parameters such as Darcy, Forchheimer, 
Prandtl numbers, and conductivity ratio. Experimental results 
were reported for natural convection in a horizontal porous 
cavity heated from below. They achieved an excellent 
agreement between the experimental results and numerical 
predictions with variable porosity. For the range of porosity 
between 0.375 and 0.468 the Brinkman-Forchheimer-extended 
Darcy solutions were found to compare well with the 
experimental results only at low Rayleigh number and Darcy 
number. For higher values of Rayleigh and Darcy numbers, 
the Brinkman-Forchheimer-extended model (generalized equa- 
tion) with variable porosity and variable thermal conductivity 
in the wall regions compares reasonably well with the 
experimental data. However, there are many porous materials 
whose porosities are higher than 0.9, as mentioned earlier. For  
these materials, the effect of variable porosity is not significant 
at all and can be neglected. 

Conclusion 

Some empirical information in the form of constitutive 
relations is necessary for analysis of convective flow in a porous 
medium such as turbulence. Although this is a step away 
from the absolute rigorous treatment, the best alternative is to 
minimize the "number of constitutive assumptions and try to 
use a constitutive equation that is directly tied down to some 
well-known experimental results. The Brinkman-Forchheimer- 
extended Darcy formulation, if not perfect, is the most 
commonly used equation in this regard. This accounts for the 
boundary-layer development and macroscopic shear stress, as 
well as microscopic shear stress and microscopic inertial force. 

Numerical results based on this formulation have been 
shown to agree well with experimental prediction. This 
equation is also very effective for studying the motion of the 
fluid in the region, which is partly filled with a porous medium 
and partly filled with a regular fluid. The Beavers-Joseph slip 
velocity boundary condition is extremely difficult to implement 
because the slip coefficient depends upon many parameters. A 
porous medium/clear fluid interface is best dealt with by the 
Brinkman-Forchheimer-extended Darcy formulation and the 
continuity of velocities and stresses at the interface. The effect 
of porosity variation is not required for a high-porosity 
medium, but it should be considered for a dense porous 
medium. 
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